

Cells in our body are constantly dividing and dying.

Over time, dividing cells can accumulate mutations.

These mutations are inherited by daughter cells.

Our tissues are full of these clones.

As we age, some clones begin to dominate others.

Stem cells are responsible for developing and maintaining specialized tissue.

Stem cells populations are hard to directly study.

We use the **zebrafish testis** as a model system.

I combine models and experimental data to study clonal dynamics.

0-4 hpf

0-4 hpf

adulthood

A few clones dominate the sperm pool.

Small clones persist.

Consistent trends emerge.

How strong is genetic **drift**?

Is there evidence of **selection**?

Clonal drift is *sometimes* seen in some other organisms.

Positive selection is seen in humans through **paternal age effect** mutations.

Wood, K. A., & Goriely, A. (2022). The impact of paternal age on new mutations and disease in the next generation. Fertility and Sterility, 118(6), 1001-1012.

Hidden Markov modeling setup

Hidden Markov modeling setup

Use the **Moran process** for the hidden dynamics.

Moran process

Stem cells differentiate at rate r. Measures strength of **genetic drift**.

Observed sperm data

Sample stem cells with replacement!

Are clones undergoing drift?

Is the differentiation rate r non-zero?

A simple example

200 stem cells100 sperm per sample

??? differentiation rate

Estimate parameters using ML (maximum likelihood)

 $\mathcal{L}(r) = \ln(\Pr(\text{observed data}: \text{differentiation rate } r)).$

Null hypothesis: r = 0.

Use the log likelihood ratio test statistic,

$$\lambda = 2(\max(\mathcal{L}) - \mathcal{L}(0))$$

We'll accept that $r \neq 0$ if $\lambda > 6$.

Likelihood calculations are made using the **forward algorithm**.

The likelihood is maximized at r = 1.25.

The test statistic λ is 8.57.

Measuring genetic drift in experimental data

Estimate drift of each clone individually.

Measuring genetic drift in experimental data

Large clones experience more drift than small clones.

Clones that begin large tend to decrease in size.

Is there evidence of selection?

Weigh probability of a target clone dividing by 1 + s.

Null hypothesis: s = 0.

The likelihood is maximized at s = -0.19.

The test statistic λ is 8.36.

Introducing selection experimentally

RTK-RAS-MAPK FGFR1 Insert a mutation in one of FGFR2 RET FGFR3 GFRA1 the primordial germ cells. SHP2 GRB2 SHOC2 CBL PPP1CB RAFs PTEN AKT MEKs MAPK3 Proliferation School Growth Survival 34

Summary

Acknowledgements

Fred Adler (advisor)

Jamie Gagnon (lab PI)

Jenna Weber

Andy Sposato

Utah Genetics Training Program (T32-GM141848)

NSF Graduate Research Fellowship

Let's collaborate! connor.shrader@utah.edu math.utah.edu/~shrader/

Thank you!

