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Biological background

1. Thereis a group of cells with

the same developmental
potential

2. Anexternal signal prompts
them to communicate

3. A pattern of cell fates forms




Existing mathematical research

* Modeling lateral inhibition

* Collieretal. (1996)

= h(D;) — uN; ><
dt
D g(N;) — pD;
dt ‘ l N — T N

* hand g are increasing and decreasing hill functions, respectively
» D, is the average of D over the neighbors of the it" cell



Existing mathematical research

 Computer simulations of the model for a choice of constants
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* Patterns form through a bifurcation as external signal varies

* Coarse-grained patterns are observed when there is long-range
sighaling or additional chemical sighaling (lateral stabilization)

* Vasilopoulos and Painter (2016), Hadjivasiliou et al. (2016), de Back et al. (2013)



Model-independent predictions
of pattern formation

We can predict patterns without assuming reaction rates



Model-independent analysis

* The cell-communication network is a regular network

Any admissible ODE has the form:

dx,
dt = f(X1,X1,X3, 1)
dx,
E — f(xz;xbxb/l)
dx
dt = f(X3,X1,X3,4)

for x; € R® (node space) and some smooth
function f thatis symmetric in its second
and third arguments 2

* Network structure restricts possible solutions

h



Bifurcating patterns in regular networks
* Bifurcations in admissible ODEs lead to patterns

* Wang and Golubitsky (2004)




Bifurcating patterns in regular networks

* Bifurcations in admissible ODEs lead to patterns
* Wang and Golubitsky (2004)

* Only the first bifurcation is stable
* What properties of the system determine the first bifurcation?




Chemical signaling selects the first bifurcation
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Coarse-grained patterns from long-range signals




Coarse-grained patterns require additional signals

Necessary chemical

Observed Pattern interactions
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Can we generalize this idea
beyond Notch signaling?



Chemical signaling dynamics

Cell-communication dynamics

dx,
F = f(x1»x1»x2»/1)
dx,
dr = f(x2,X1,X1,4)
dx;
% — f(xBJxl)xZ')[)

Let f == f(u,v,w)
Internal dynamics
Q = Dyf

Coupled dynamics
R = va

2 A 3

Adjacency matrix

1 1 0
A=(2 0 O
1 1 0

When evaluating the Jacobian J at a synchronous equilibrium,

O+R R 0
(g o)
R R 0

0 0 0
0 Q0 O
0 0 0

R R 0
>+<2R 0 0>=Q®I+R®A

R R 0




Bifurcating pattern depends on cell

communication and chemical signaling

Theorem (Golubitsky and Lauterbach, 2009): The critical
eigenvalues of |/ evaluated at a synchronous steady-state are the

union of the eigenvalues of / Cell-level dynamics

Q + R
Global cell-communication

where @, R are the internal and coupled dynamics and y; is an
eigenvalue of A. The eigenvectors are u & v; where u is an
eigenvector of Q + u;R and (y;, v;) is an eige?\xalue—eigenvector pair
of A

Bifurcating Pattern



Criteria for different patterns with 2 chemicals

* Suppose the adjacency matrix A has real eigenvalues p; < --- < u;, with
algebraic multiplicities a4, ..., oy,

e Letdet(R) =0

 Take B = tr(Q)tr(R) — tr(QR)
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Criteria for different patterns with 2 chemicals

* Suppose the adjacency matrix A has real eigenvalues p; < --- < u; with
algebraic multiplicities a4, ..., a;, (symmetric adjacency matrices are common)

* Letdet(R) = 0 (sparsity of intercellular chemical signaling)

 Take B = tr(Q)tr(R) — tr(QR)

* Thenthere are four possible generic bifurcations

Pattern given by
eigenvector
associated with uq

Critical Pattern

Number of Critical

Determinant

Trace Condition

No pattern forms

Space Eigenvalues Condition
?‘P“l a, (real) B >0 NDG
*pia 2a, (imag.) NDG tr(R) < 0
pPlk — span{Tn} 1 (real) B<O0 NDG
Ptk = span{1,} |2 (imag.) NDG tr(R) > 0




By removing unnecessary assumptions, we can
perform a more complete analysis of pattern
formation

* We can more readily:
1. Predict molecular causes of pattern breakdown
2. Inferinformation about necessary chemical interactions



Inferring causes of pattern breakdown

* Suppose the following signaling results in a pattern

Cell 1 Cell 2




Inferring causes of pattern breakdown

* Making the dotted arrow small will break the pattern

Cell 1 Cell 2
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If you have two, you can learn about the other

Cell
communication

/ N

Chemical
Signaling
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Conclusions

* By using a model independent approach, we can predict cellular
patterns with minimal assumptions

e Stripping away assumptions allows us to develop criteria for
pattern formation

* The criteria allow us to infer molecular causes of pattern breakdown and
infer unknown chemical kinetics

Future work

* Generalize the theory to incorporate general chemical signaling
networks

* Incorporate small perturbations to the network structure
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