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Biological background
1. There is a group of cells with 

the same developmental 
potential

2. An external signal prompts 
them to communicate

3. A pattern of cell fates forms



• Modeling lateral inhibition
• Collier et al. (1996)

𝑑𝑁𝑖
𝑑𝑡

= ℎ 𝐷𝑖 − 𝜇𝑁𝑖
𝑑𝐷𝑖
𝑑𝑡

= 𝑔 𝑁𝑖 − 𝜌𝐷𝑖

• ℎ and 𝑔 are increasing and decreasing hill functions, respectively
• ഥ𝐷𝑖  is the average of 𝐷 over the neighbors of the 𝑖𝑡ℎ  cell

Existing mathematical research 



Existing mathematical research 
• Computer simulations of the model for a choice of constants

• Patterns form through a bifurcation as external signal varies
• Coarse-grained patterns are observed when there is long-range 

signaling or additional chemical signaling (lateral stabilization)
• Vasilopoulos and Painter (2016), Hadjivasiliou et al. (2016), de Back et al. (2013)
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Model-independent predictions 
of pattern formation

We can predict patterns without assuming reaction rates



Model-independent analysis
• The cell-communication network is a regular network

Any admissible ODE has the form:
𝑑𝒙1
𝑑𝑡 = 𝑓(𝒙𝟏, 𝒙𝟏, 𝒙𝟐, 𝜆)

𝑑𝒙2
𝑑𝑡 = 𝑓(𝒙𝟐, 𝒙𝟏, 𝒙𝟏, 𝜆)

𝑑𝒙3
𝑑𝑡 = 𝑓(𝒙𝟑, 𝒙𝟏, 𝒙𝟐, 𝜆)

for 𝒙𝒊 ∈ ℝ𝑠  (node space) and some smooth
function 𝑓 that is symmetric in its second 
and third arguments

• Network structure restricts possible solutions



Bifurcating patterns in regular networks
• Bifurcations in admissible ODEs lead to patterns

• Wang and Golubitsky (2004)

𝜆

|𝑥|



Bifurcating patterns in regular networks

𝜆

|𝑥|

• Bifurcations in admissible ODEs lead to patterns
• Wang and Golubitsky (2004)

• Only the first bifurcation is stable
• What properties of the system determine the first bifurcation?



Chemical signaling selects the first bifurcation

⟹



Coarse-grained patterns from long-range signals

⟹



Coarse-grained patterns require additional signals

Observed Pattern
Necessary chemical 

interactions



Can we generalize this idea 
beyond Notch signaling?



Chemical signaling dynamics

𝑑𝒙1
𝑑𝑡

= 𝑓(𝒙𝟏, 𝒙𝟏, 𝒙𝟐, 𝜆)

𝑑𝒙2
𝑑𝑡

= 𝑓(𝒙𝟐, 𝒙𝟏, 𝒙𝟏, 𝜆)

𝑑𝒙3
𝑑𝑡

= 𝑓(𝒙𝟑, 𝒙𝟏, 𝒙𝟐, 𝜆)

Cell-communication dynamics

Adjacency matrix

𝐴 =
1 1 0
2 0 0
1 1 0

When evaluating the Jacobian 𝐽 at a synchronous equilibrium,

𝐽 =
𝑄 + 𝑅 𝑅 0
2𝑅 𝑄 0
𝑅 𝑅 𝑄

=
𝑄 0 0
0 𝑄 0
0 0 𝑄

+
𝑅 𝑅 0
2𝑅 0 0
𝑅 𝑅 0

= 𝑄⨂𝐼 + 𝑅⨂𝐴

Let 𝑓 ≔ 𝑓(𝑢, 𝑣, 𝑤) 
Internal dynamics

 Q = 𝐷𝑢𝑓
Coupled dynamics

𝑅 = 𝐷𝑣𝑓



Bifurcating pattern depends on cell 
communication and chemical signaling
Theorem (Golubitsky and Lauterbach, 2009): The critical 
eigenvalues of 𝐽 evaluated at a synchronous steady-state are the 
union of the eigenvalues of 

𝑄 + 𝜇𝑖𝑅 

where 𝑄, 𝑅 are the internal and coupled dynamics and 𝜇𝑖  is an 
eigenvalue of 𝐴. The eigenvectors are 𝑢 ⊗ 𝑣𝑖  where 𝑢 is an 
eigenvector of 𝑄 + 𝜇𝑖𝑅 and (𝜇𝑖, 𝑣𝑖) is an eigenvalue-eigenvector pair 
of 𝐴

Cell-level dynamics

Global cell-communication

Bifurcating Pattern



Criteria for different patterns with 2 chemicals
• Suppose the adjacency matrix 𝐴 has real eigenvalues 𝜇1 < ⋯ < 𝜇𝑘  with 

algebraic multiplicities 𝛼1,… , 𝛼𝑘
• Let det 𝑅 = 0
• Take 𝐵 = tr 𝑄 tr 𝑅 − tr 𝑄𝑅
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Criteria for different patterns with 2 chemicals

Critical Pattern 
Space

Number of Critical 
Eigenvalues

Determinant 
Condition

Trace Condition

𝑃𝜇1 𝛼1 (real) 𝐵 > 0 NDG

𝑃𝜇1 2𝛼1 (imag.) NDG tr 𝑅 < 0

𝑃𝜇𝑘 = span{1𝑛} 1 (real) 𝐵 < 0 NDG

𝑃𝜇𝑘 = span{1𝑛} 2 (imag.) NDG tr 𝑅 > 0

Pattern given by 
eigenvector 

associated with 𝜇1

No pattern forms

• Suppose the adjacency matrix 𝐴 has real eigenvalues 𝜇1 < ⋯ < 𝜇𝑘  with 
algebraic multiplicities 𝛼1,… , 𝛼𝑘  (symmetric adjacency matrices are common)

• Let det 𝑅 = 0 (sparsity of intercellular chemical signaling)
• Take 𝐵 = tr 𝑄 tr 𝑅 − tr 𝑄𝑅
• Then there are four possible generic bifurcations



By removing unnecessary assumptions, we can 
perform a more complete analysis of pattern 
formation
• We can more readily:

1. Predict molecular causes of pattern breakdown
2. Infer information about necessary chemical interactions



Inferring causes of pattern breakdown

Cell 1 Cell 2
1 2

3 4

5 6

7 8

a b

12

34

56

78

ab

• Suppose the following signaling results in a pattern



Inferring causes of pattern breakdown
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• Making the dotted arrow small will break the pattern



Inferring 
chemical 
signaling 
from partial 
information

Known Chemical 
Interactions

Observed 
Pattern

Necessary 
Chemical Kinetics

𝑢

𝑣

𝑢

𝑣

𝑢

𝑣

𝑢

𝑣

𝑢

𝑣

𝑢

𝑣

Steady-state

(No Hopf)

Steady-state

(No Hopf)

Sync. Osc.

Osc. Pattern

Steady-state

𝑢𝑖 𝑢𝑗

𝑢𝑖 𝑢𝑗
𝑢𝑖 𝑢𝑗
𝑢𝑖 𝑢𝑗

𝑣𝑖 𝑢𝑖

𝑣𝑖 𝑢𝑖

𝑢𝑖 𝑣𝑗

𝑢𝑖 𝑣𝑗and

and
or



Cell
communication

Chemical
Signaling Pattern

If you have two, you can learn about the other



Conclusions
• By using a model independent approach, we can predict cellular 

patterns with minimal assumptions
• Stripping away assumptions allows us to develop criteria for 

pattern formation
• The criteria allow us to infer molecular causes of pattern breakdown and 

infer unknown chemical kinetics

Future work
• Generalize the theory to incorporate general chemical signaling 

networks
• Incorporate small perturbations to the network structure
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