Structural causes of pattern formation and its breakdown

Liam D. O'Brien¹ and Adriana T. Dawes^{1,2}

¹Department of Mathematics at The Ohio State University

²Department of Molecular Genetics at The Ohio State University

Biological background

1. There is a group of cells with the same developmental potential

Biological background

- 1. There is a group of cells with the same developmental potential
- 2. An external signal prompts them to communicate

Biological background

- 1. There is a group of cells with the same developmental potential
- 2. An external signal prompts them to communicate
- 3. A pattern of cell fates forms

Existing mathematical research

- Modeling lateral inhibition
 - Collier et al. (1996)

$$\frac{dN_i}{dt} = h(\overline{D_i}) - \mu N_i$$
$$\frac{dD_i}{dt} = g(N_i) - \rho D_i$$

- h and g are increasing and decreasing hill functions, respectively
- \overline{D}_i is the average of D over the neighbors of the i^{th} cell

Existing mathematical research

• Computer simulations of the model for a choice of constants

- Patterns form through a **bifurcation** as external signal varies
- Coarse-grained patterns are observed when there is long-range signaling or additional chemical signaling (lateral stabilization)
 - Vasilopoulos and Painter (2016), Hadjivasiliou et al. (2016), de Back et al. (2013)

Model-independent predictions of pattern formation

We can predict patterns without assuming reaction rates

Model-independent analysis

• The cell-communication network is a regular network

Any **admissible ODE** has the form:

$$\frac{dx_1}{dt} = f(x_1, \overline{x_1}, \overline{x_2}, \lambda)$$

$$\frac{dx_2}{dt} = f(x_2, \overline{x_1}, \overline{x_1}, \lambda)$$

$$\frac{dx_3}{dt} = f(x_3, \overline{x_1}, \overline{x_2}, \lambda)$$

for $x_i \in \mathbb{R}^s$ (node space) and some smooth function f that is symmetric in its second and third arguments

Network structure restricts possible solutions

Bifurcating patterns in regular networks

- Bifurcations in admissible ODEs lead to patterns
 - Wang and Golubitsky (2004)

Bifurcating patterns in regular networks

- Bifurcations in admissible ODEs lead to patterns
 - Wang and Golubitsky (2004)
- Only the first bifurcation is stable
- What properties of the system determine the first bifurcation?

Chemical signaling selects the first bifurcation

Coarse-grained patterns from long-range signals

Coarse-grained patterns require additional signals

Observed Pattern

Necessary chemical interactions

Can we generalize this idea beyond Notch signaling?

Chemical signaling dynamics

Cell-communication dynamics

$$\frac{d\mathbf{x}_1}{dt} = f(\mathbf{x}_1, \overline{\mathbf{x}_1, \mathbf{x}_2}, \lambda)$$

$$\frac{d\mathbf{x}_2}{dt} = f(\mathbf{x}_2, \overline{\mathbf{x}_1, \mathbf{x}_1}, \lambda)$$

$$\frac{d\mathbf{x}_3}{dt} = f(\mathbf{x}_3, \overline{\mathbf{x}_1, \mathbf{x}_2}, \lambda)$$

Let $f \coloneqq f(u, \overline{v, w})$

Internal dynamics

$$Q = D_u f$$

Coupled dynamics

$$R = D_{\nu}f$$

Adjacency matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

When evaluating the Jacobian J at a synchronous equilibrium,

$$J = \begin{pmatrix} Q + R & R & 0 \\ 2R & Q & 0 \\ R & R & Q \end{pmatrix} = \begin{pmatrix} Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & Q \end{pmatrix} + \begin{pmatrix} R & R & 0 \\ 2R & 0 & 0 \\ R & R & 0 \end{pmatrix} = Q \otimes I + R \otimes A$$

Bifurcating pattern depends on cell communication and chemical signaling

Theorem (Golubitsky and Lauterbach, 2009): The critical eigenvalues of J evaluated at a synchronous steady-state are the union of the eigenvalues of

 $Q + \mu_i R$ Global cell-communication

where Q,R are the internal and coupled dynamics and μ_i is an eigenvalue of A. The eigenvectors are $u\otimes v_i$ where u is an eigenvector of $Q+\mu_iR$ and (μ_i,v_i) is an eigenvalue-eigenvector pair of A

Bifurcating Pattern

- Suppose the adjacency matrix A has real eigenvalues $\mu_1 < \cdots < \mu_k$ with algebraic multiplicities $\alpha_1, \ldots, \alpha_k$
- Let det(R) = 0
- Take B = tr(Q)tr(R) tr(QR)

- Suppose the adjacency matrix A has real eigenvalues $\mu_1 < \cdots < \mu_k$ with algebraic multiplicities $\alpha_1, \ldots, \alpha_k$ (symmetric adjacency matrices are common)
- Let det(R) = 0
- Take B = tr(Q)tr(R) tr(QR)

- Suppose the adjacency matrix A has real eigenvalues $\mu_1 < \cdots < \mu_k$ with algebraic multiplicities $\alpha_1, \ldots, \alpha_k$ (symmetric adjacency matrices are common)
- Let det(R) = 0 (sparsity of intercellular chemical signaling)
- Take B = tr(Q)tr(R) tr(QR)

- Suppose the adjacency matrix A has real eigenvalues $\mu_1 < \cdots < \mu_k$ with algebraic multiplicities $\alpha_1, \ldots, \alpha_k$ (symmetric adjacency matrices are common)
- Let det(R) = 0 (sparsity of intercellular chemical signaling)
- Take B = tr(Q)tr(R) tr(QR)
- Then there are four possible generic bifurcations

Pattern given by eigenvector	Critical Pattern Space	Number of Critical Eigenvalues	Determinant Condition	Trace Condition
associated with μ_1	P^{μ_1}	$lpha_1$ (real)	B > 0	NDG
	P^{μ_1}	$2lpha_1$ (imag.)	NDG	$\operatorname{tr}(R) < 0$
	$P^{\mu_k} = \operatorname{span}\{\overrightarrow{1}_n\}$	1 (real)	B < 0	NDG
No pattern forms	$P^{\mu_k} = \operatorname{span}\{\overrightarrow{1}_n\}$	2 (imag.)	NDG	$\operatorname{tr}(R) > 0$

By removing unnecessary assumptions, we can perform a more complete analysis of pattern formation

- We can more readily:
 - 1. Predict molecular causes of pattern breakdown
 - 2. Infer information about necessary chemical interactions

Inferring causes of pattern breakdown

• Suppose the following signaling results in a pattern

Inferring causes of pattern breakdown

Making the dotted arrow small will break the pattern

Inferring chemical signaling from partial information

If you have two, you can learn about the other

Conclusions

- By using a model independent approach, we can predict cellular patterns with minimal assumptions
- Stripping away assumptions allows us to develop criteria for pattern formation
 - The criteria allow us to infer molecular causes of pattern breakdown and infer unknown chemical kinetics

Future work

- Generalize the theory to incorporate general chemical signaling networks
- Incorporate small perturbations to the network structure

Acknowledgements

- Dawes Lab (OSU)
- PI: Adriana T. Dawes
 - Natalia Kravtsova (UBC)
 - Ian Santiago
 - Madelyn Isbel
 - Nikhila Elevarthi
 - Meghana Nandigam

- Other mentors/collaborators
 - Marty Golubitsky (OSU)
 - Helen Chamberlin (OSU)

O'Brien, L.D., & Dawes, A.T. (2025). Structural Causes of Pattern Formation and Loss Through Model-Independent Bifurcation Analysis. *In submission*

THE OHIO STATE UNIVERSITY

References

- O'Brien, L.D., & Dawes, A.T. (2025). Structural Causes of Pattern Formation and Loss Through Model-Independent Bifurcation Analysis. *In submission*
- Collier, J.R., Monk, N.A., Maini, P.K., Lewis, J.H. (1996). Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. *Journal of theoretical Biology, 183(4), 429-446.*
- Vasilopoulos, G., & Painter, K.J. (2016). Pattern formation in discrete cell tissues under long range filopodia-based direct cell to cell contact. Mathematical Biosciences, 273, 1-15.
- Hadjivasiliou, Z., Hunter, G.L., & Baum, B. (2016). A new mechanism for spatial pattern formation via lateral and protrusion-mediated lateral signalling. *Journal of the Royal Society Interface, 13(124)*,
- De Back, W., Zhou, J.X., & Brusch, L. (2013). On the role of lateral stabilization during early patterning in the pancreas." *Journal of the Royal Society Interface, 10(79)*
- Wang, Y., & Golubitsky, M. (2004). Two-colour patterns of synchrony in lattice dynamical systems. *Nonlinearity, 18(2),* 631.
- Golubitsky, M., & Lauterbach, R. (2009). Bifurcations from synchrony in homogeneous networks: linear theory. SIAM Journal on Applied Dynamical Systems, 8(1), 40-75