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Data Assimilation (DA) Overview

Observations:

* |[dea: Given model predictions Incomplete (only

d ob ti DA ks t certain details are

and observations, seeks to observable) and

produce an “optimal” estimate EEIEAGEIHELT
of current and future states of a errors /

stochasticity)
target system

Model Predictions:

Incomplete (only
certain details are

captured) and noisy
(prediction errors,
which propagate)

* Brief History Data Assimilation
* Numerical Weather Prediction
* Different implementations: initial l
condition estimation, model

parameterization /
personalization, interpolation,
single vs repetitive, etc.

“Optimal” Forecast Gl Nl
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Medical Models and Digital Twins

¢ M e.d I Ca l- Dlglta l . FROM PHYSICALTO.VlIRTUAL
Twins: An “up-to- | e posems
date” model

. Physical () Virtual
which changes counterpart representation
with P atient and Sensors and observing Modeling and simulation;

. . systems, data acquisition, artificial intelligence;
IN fO FMsS me d ICa l and data integration ( _ first-principles, mechanistic,
d ec i S i oNns and empirical models;

and visualization
FROM VIRTUALTO PHYSICAL
Automated control and decision-making

& EI

National Academies of Sciences, Engineering, and Medicine. 2023. Foundational Research
Gaps and Future Directions for Digital Twins. https://doi.org/10.17226/26894
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The Kalman Filter (KF)

Prior knowledge Pr_1jk—1
of state Xk—1|k—1

Prediction step
—> Based on e.q.

* Optimal algorithm; . T phys‘c"’l' model

minimizes mean squared Next timestep  Phlk—1

error of estimates ke k41 X’f'fl

: : A

* Predict gnd update ?Stlmate Pk Update step Measurements

means X; and covariances P; Xyl <Compare prediction <—

to measurements .
* Key assumption for optimality: f
. . . Output estimate
All noise is Gaussian | B of state
https://en.wikipedia.org/wiki/Kalman_filter

* Measurements can be irregular
* Traditionally used for ODE/PDE models

* KF Variants: Unscented KF (UKF), Ensemble KF (EnKF), etc.
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Applying KF to Stochastic, Multiscale Models

* Agent-based models (ABMs)

« ABM: Computational model for simulating
autonomous agents which captures how
local interactions affect the system overall

* ABMs are typically stochastic and/or
multiscale, with a highly variable state space

* Micro-state space: Complete description of
variable / attribute values for each agent at
time t; model may several parameters

 Macro-state space: Summarized )
description of aggregate variables across all Cockrelland An 2021. Viruses.
agents attime t (e,g,, agent cou nts) Reimplementation and simulation by A. Knapp.
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- ABMKF - Updating ABM

DA

via

Macro-states™

Observations
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ABM of Viral Infection (Cockrell and An, 2021)

o

Cockrelland An 2021. Viruses. Model reimplementation in Python and simulation by A. Knapp.

* Tissue and
Immune
response to
viral infection

* 40+ param.,
20+ state
variables

e 2D Healthy
and
Epithelium
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Quantization and Error Diffusion

* Quantization: The mapping of
a large set to a small set

* Quantization error A

* Typical rounding approach can
produce artifacts (“banding”)

 Error diffusion:
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Images (Right): P. Shihn. https://shihn.ca/posts/2020/dithering/
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Quantization and Error Diffusion

* Quantization: The mapping of
a large set to a small set

* Quantization error A

8 colors

* Typical rounding approach can
produce artifacts (“banding”)

 Error diffusion:
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Images (Right): P. Shihn. https://shihn.ca/posts/2020/dithering/
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Quantization Example: Viral Infection ABM

* For continuous variables — scale up or
down at each lattice point

* For discrete variables (e.g., cell state)
— scale* and quantize to apply error
diffusion w.r.t. the whole environment

* Note: The process is deterministic
* Left to right, top to bottom

* Other orders can be used; may produce
slightly different results Q

12
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Quantization Example: Viral Infection ABM

Full video by A. Knapp on YouTube
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Summary and Future Work

e Summary
 Background: Data assimilation (DA) and Kalman filters (KFs)
* Contributions:

* An algorithm for applying (En)KF to an ABM’s macro-state
as a first step example for how DA might work with
stochastic, multiscale models Journal of the Royal

* An approach for micro-state synthesis based on Sozcg;gy./ggezr;%co%?
guantization and error diffusion techniques which (2025):
respects model’s spatial distribution

* Future Work: Several avenues to improve and generalize predictions, like
handling edge cases and investigating alternatives to micro-state synthesis

14
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Thank You for Listening!

v |

for Systems Medicine, Fall 2
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