Personalizing agent-based models to construct medical digital twins

Daniel A. Cruz

Assistant Professor*

August 13, 2025

University of Florida → Cal Poly, SLO

Outline and Land Acknowledgement

- Data Assimilation (DA) Background
 - Kalman Filters (KFs)
- Stochastic, Multiscale Models
 - Agent-Based Models (ABMs)
 - Micro-states and Macro-states
- Results: DA on ABMs
 - Example: Viral Infection ABM
 - Micro-state Synthesis and Quantization

A.C. Knapp, D.A. Cruz, B. Mehrad, and R.C. Laubenbacher.

Journal of the Royal Society

Interface 22 (2025): 20250055

• Land acknowledgement: Mascogo, Miccosukee, Nacotchtank (Anacostan), Piscataway, Seminole, and Timucua (Nations, Tribes, and People)

Data Assimilation (DA) Overview

- Idea: Given model predictions and observations, DA seeks to produce an "optimal" estimate of current and future states of a target system
- Brief History
 - Numerical Weather Prediction
 - Different implementations: initial condition estimation, model parameterization / personalization, interpolation, single vs repetitive, etc.

Medical Models and Digital Twins

Medical Digital
 Twins: An "up-to-date" model
 which changes
 with patient and informs medical decisions

National Academies of Sciences, Engineering, and Medicine. 2023. *Foundational Research Gaps and Future Directions for Digital Twins*. https://doi.org/10.17226/26894

The Kalman Filter (KF)

- *Optimal* algorithm; minimizes mean squared error of estimates
- Predict and update estimate means \hat{x}_t and covariances P_t
- Key assumption for optimality: All noise is Gaussian
- Measurements can be irregular
- Traditionally used for ODE/PDE models
- KF Variants: Unscented KF (UKF), Ensemble KF (EnKF), etc.

Applying KF to Stochastic, Multiscale Models

- Agent-based models (ABMs)
 - **ABM:** Computational model for simulating autonomous agents which captures how local interactions affect the system overall
 - ABMs are typically stochastic and/or multiscale, with a highly variable state space
 - Micro-state space: Complete description of variable / attribute values for each agent at time t; model may several parameters
 - Macro-state space: Summarized description of aggregate variables across all agents at time t (e.g., agent counts)

Cockrell and An 2021. Viruses. Reimplementation and simulation by A. Knapp.

Micro-state Synthesis for :hoose

ABM of Viral Infection (Cockrell and An, 2021)

- Tissue and immune response to viral infection
- 40+ param.,20+ statevariables
- 2D Healthy and Infected Epithelium

Cockrell and An 2021. Viruses. Model reimplementation in Python and simulation by A. Knapp.

Quantization and Error Diffusion

- Quantization: The mapping of a large set to a small set
- Quantization error Δ
- Typical rounding approach can produce artifacts ("banding")
- Error diffusion:

All colors

Black and White

Images (Right): P. Shihn. https://shihn.ca/posts/2020/dithering/

Quantization and Error Diffusion

- Quantization: The mapping of a large set to a small set
- Quantization error Δ
- Typical rounding approach can produce artifacts ("banding")
- Error diffusion:

8 colors

Images (Right): P. Shihn. https://shihn.ca/posts/2020/dithering/

Quantization Example: Viral Infection ABM

- For continuous variables scale up or down at each lattice point
- For discrete variables (e.g., cell state)
 scale* and quantize to apply error
 diffusion w.r.t. the whole environment
- Note: The process is deterministic
 - Left to right, top to bottom
 - Other orders can be used; may produce slightly different results

Quantization Example: Viral Infection ABM

Full video by A. Knapp on YouTube

Summary and Future Work

- Summary
 - Background: Data assimilation (DA) and Kalman filters (KFs)
 - Contributions:
 - An algorithm for applying (En)KF to an ABM's macro-state as a first step example for how DA might work with stochastic, multiscale models
 - An approach for micro-state synthesis based on quantization and error diffusion techniques which respects model's spatial distribution
- Future Work: Several avenues to *improve and generalize* predictions, like handling edge cases and investigating alternatives to micro-state synthesis

Journal of the Royal Society Interface **22** (2025): 20250055

Thank You for Listening!

UF Laboratory for Systems Medicine, Fall 2023

