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Motivating ideas

1. The brain is a dynamical system. ("The brain is a computer)
2. How does connectivity shape dynamics?

3. By studying ANNs that are dynamical systems, we can generate hypotheses about the
dynamic meaning/role of various network motifs.

4. Network motifs can be composed as dynamic building blocks with predictable properties.

5. One network (by architecture/connectivity) is really many networks in the presence of
neuromodulation or external control.



Plan of the talk

® Brief intro tfo TLNs, CTLNs, and gCTLNs

® Fixed points and attractors and graph rules
e Domination

e Dominoes and inhibitory control

o E-T TLNs

e Domination-reduction in connectomes
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TLNs — nonlinear recurrent network models

Threshold-linear network dynamics:

dilj?;
dt

T
= —T; + E Wz’jﬂij + bz
7=1
W is an n X n matrix

bec R"

+

v

The TLN is defined by (W, b)

Linear network dynamics:

dx

— =A b
ak

A 1s an n X n matrix

bec R"

Long-tferm behavior is easy to
infer from eigenvalues, eigenvectors
— linear algebra tells us everything.

Basic Question: Given (W,b), what are the network dynamics?



The most special case: Combinatorial Threshold-Linear Networks (CTLNs)

graph G and inhibitory cells
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parameter constraints:
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The graph encodes the pattern
of weak and strong inhibition

Think: generalized WTA networks

For fixed parameters,
only the graph changes -
isolates the role of connectivity



Less special: generalized Combinatorial Threshold-Linear Networks (gCTLNSs)

graph G |dea: network of excitatory

and inhibitory cells TLN dynamics:
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The gCTLN is defined by a graph G and

The graph encodes the pattern
two vectors of parameters: ¢, 0

of weak and strong inhibition

—1+4¢€; 1if 7 — 12, weak inhibition b; =60 > 0 for all neurons
Wij =4 —1—9; if j /A 4, strong inhibition
0 if 1 = 7. (default is uniform across neurons,

constant in time)

parameter constraints:
0;
5j +1

6j,5j > (), g; <



Less special: generalized Combinatorial Threshold-Linear Networks (gCTLNSs)

graph G |dea: network of excitatory

and inhibitory cells TLN dynamics:
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The gCTLN is defined by a graph G and

The graph encodes the pattern
two vectors of parameters: ¢, 0

of weak and strong inhibition

—1+4¢€; 1if 7 — 12, weak inhibition b; =60 > 0 for all neurons
Wij=<{ —1—09; 1if 7/ i, strong inhibition
0 if 1 = 7. (default is uniform across neurons,

constant in time)

Special case: if the parameters €;,0; are the same for all neurons, we have a CTLN.
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TLNs, CTLNs, and gCTLNs

all recurrent network models

linear
models

competitive TLNs




TLNs, CTLNs, and gCTLNs

1. Display rich nonlinear dynamics: multistability, limit cycles, chaos...
2. Mathematically tractable: we can prove theorems directly connecting graph structure to dynamics.

3. Both stable and unstable fixed points play a critical role in shaping the dynamics (the vector field).

graph structure static attractors (fixed pts) dynamic attractors
(correspond to certain unstable fixed pts)

B

dynamic | |
attractor dynamic
attractor

>

dynamic
attractor

FP(G) = FP(G,e,0) = { fixed points (stable and unstable) }

Curto & Morrison, Notices of the AMS 2023 (review paper)



Theorem: oriented graphs with no sinks

Theorem. If G is an oriented graph with no sinks, then the network
has no stable fixed points (but bounded activity).

A

z2(1) B

te

firing ra
Q.
=8
|
|
3
_|_
Ib.
1~
S
S
S,
_|_
S~
_|_

3e { ®2 0O 5 10 15 20 25 30 35 40 45 50 ) h
time Yi
C o
R o Y3 = 0 x\\-‘\
——‘d’/— ‘_‘\_
2 N-:_::‘-.——\ Y1 = 0 | e~

S
l h J ) J—
| . e
ia) il - - ']
) ! »
L ¥ .I- : " -- e
o 5 p NN g § e y - -
sV ~| o N
7 N y "3 [
| R
*

0.5
1.5

Existence of such limit cycles was established in Bel, Cobiaga, Reartes, and Rotstein, SIADS 2022.
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CTLN g;Q(t)
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time Yi

firing rate

gCTLN #1
unstable fixed point: [0.0812, 0.5481, 0.1018]
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How does the 3-cycle oscillation change for gCTLNSs?
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time Yi
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Gaudi attractor

Fun examples!




Gaudi attractor
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FP(G) ={4,123,1234}

Fun examples!

limit cycle with high-firing 123

firing rate
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time

stable fixed point 4
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C projection of trajectories emerging

from 1234 fixed point >




Fun examples!

A B
1 limit cycle with high-firing 123
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graph has an
automorphism:
(234) symmetry

v
234 synchrony

Fun examples!

firing rate

sequence 1(234)5

limit cycle
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= —T; + ZWz’jxj + 6

g=1

Fun examples! dz,

4+

A 1 limit cycle
graph has an ® sequence 1(234)5
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Coexistence of different attractors in (asymmetric) TLNs

A 09 B stable fixed pt 48 limit cycle -- high-firing 263
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Different initial conditions vyield different attractors,
but the equations of the network are identical in each case.



You can play with these yourself with simple code
for CTLN simulations:

https://github.com/ccurto/CTLN-Basic-2.0

Matlab code was written to accompany this paper:
Diversity of emergent dynamics in competitive TLNs, SIADS 2024

https://arxiv.org/abs/1605.04463

A more general review paper:
C. Curto, K. Morrison. Graph rules for recurrent network dynamics: extended version (2023).

https://arxiv.org/abs/2301.12638
shorter version: Notices of the AMS, 2023
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Why do we choose the threshold-linear (ReLU)—/
for our nonlinearify?
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TLNs as a patchwork of linear systems

dx i
dt

Different linear system
of ODEs for each, indexed by:

o Cn

o=qi€n |y >0;

Z Wijxj + 0

j=1

dCIZ‘Q

dil?l

dt

_|_

dt

dx,,

dt

— —I9 -+ [Z?:l ngﬂjj -+ 9]

H+

Y1
—T1 + [2?21 leIj -+ (9]

Y2
—x, + [Z?:l Wit + 9}

Yn



TLNs as a patchwork of linear systems

dx; = H‘|‘
=it > Wiz +0
=1 Jd 4
v
Different linear system % =zt | S, Wi+ )
of ODEs for each, indexed by: "
d n
O g [n} % = —T9 -t [;jzl Wojx; +(?]+
o=1t€|n||y >0] o y:
Yr
e > 2
FP(W,b) = {oC|[n]|o =suppz*, for some
fixed pt ™ of the associated TLN}
\_ J

1-1 correspondence between fixed points and allowed supports



TLNs as a patchwork of linear systems
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1-1 correspondence between fixed points and allowed supports



OLDER TECHNICAL RESULTS 0 B ] ’ %\}.z')
for fixed points of TLNs = T | D Wi+ 0 ‘/:/.\
'321 - T o‘{—,\o ‘/O
parity
Theorem 2.2 (parity [7]). For any nondegenerate threshold-linear network (W, b),
Z idx{o) = +1. idx(o) = sgndet(/ — W, ).
acFP(W.b)

In particular, the total number of fixed points | FP (W, b)| is always odd.

Corollary 2.3. The number of stable fixed points in a threshold-linear network of the form (1.1)
is at most 2" !,
sign conditions

Theorem 2.6. Let (W, b) be a (non-degenerate) threshold-linear network with W;; < 0 andb; > 0
for alli.j € [n]. For any nonempty o C [n],

o€ FP(W,b) & sgns =sgns] = —sgnsjy foralli,jeo, k¢o. s7 = det((I — Woutit )i baugiy )

{

Moreover, if o € FP(W, b) then sgn s? = sgndet(I — W, ) = idx(e) foralli € o.

domination

Theorem 2.11. Let (W,00) be a threshold-linear network. Then o « FP(W,#) if and only if the
following two conditions hold:

() o is domination-free, and

(i) for each k & o there exists j € o such that j =, k.

Diversity of emergent dynamics in competitive TLNs (SIADS, 2024)

Fixed points of threshold-linear networks. (Neural Computation, 2019)



Graph rules for CTLN fixed point supports FP(G)

Notices of the AMS (2023)

Graph Rules for Recurrent
N eural N etWO rk Dynamics rule name | G|, structure graph rule

Rule 1 independent set | 0 € FP(G|,) and o € FP(G) < o is a union of sinks
Rule 2 clique o € FP(G|,) and 0 € FP(G) & o is target-free
Rule 3 cycle o € FP(G|,) and 0 € FP(G) & each k ¢ o

receives at most one edge 1 — k for 1 € o

i) | dasource j €o | o ¢ FP(G) if j — k for some k € [n]

Carina Curto and Katherine Morrison

( (

Rule 4(ii) | Jasource j ¢ o | 0 € FP(G|,) & 0 € FP(G|su; )
( (
( (

Rule 5(i) | datarget k € o | 0 ¢ FP(G|,) and o ¢ FP(G) if k /A j for some j € o
0- . .
/” IO . 4N Rule 6 Jasink s ¢ o ocU{s} € FP(G) & o € FP(G)
ﬁf T-.,k/. e « Rule 7 DAG FP(G) = {Us; | s; is a sink in G}
o€ FP(G|,) &
o € FP(G|,) o €FP(G|,) o€FP(G|,) o ¢ FP(G|,) o € FP(G|,u;) Rule 8 arbitrary |FP(G)| is odd
C  targetrules D pAG rule ° Table 1: Summary of derived graph rules.

o L.
. o d j'ﬁ‘ o/\) o
r\: S\l ok e ®
r—Fek . \0/
~
o ¢ FP(G|,) o & FP(G|suk) FP(G) = {Us; | s; is a sink in G}

C. Curto, K. Morrison. Graph rules for recurrent network dynamics: extended version (2023). https://arxiv.org/abs/2301.12638



Minimal fixed points give rise to attractors
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Theorem: uniform in-degree
(vields Rules 1-3)

G has uniform in-degree if all nodes have the same in-degree d.
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Theorem: uniform in-degree
(vields Rules 1-3)

G has uniform in-degree if all nodes have the same in-degree d.

Al ro, A2 ) A3 A4 A5 o 5o
%-. .J o’ ¢ OL ® .\0{‘—\‘0 141

.K—/

Theorem. Let G|, be an induced subgraph of uniform in-

degree d. Then

no node outside G‘a receives

c € FP(G) &

d+1 (or more) edges from O



40
FP(G)

Which cycles have su

rviving fixed points?
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Corollary 1. Let G be a cycle.
Fixed point survives <= no node outside G receives
_ 2 (or more) edges from G Y
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Which cycles have surviving fixed points?

4 N
Corollary 1. Let G be a cycle.

Fixed point survives <= no node outside G receives
_ 2 (or more) edges from G
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FP(G) = {125, 235, 1235, 1245, 12345}
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Observations about competitive TLNs

1+

1. Directed graphs (non-symmetric W) is necessary to get dynamic
attractors that (as opposed to fixed points).

2. Unstable fixed points matter — b/c of the Perron-Frobenius theorem.

3. Degeneracy: attractors can be preserved with changing weights
(selectively).

4. Architecture provides serious constraints, not everything is possible!

5. The same in/out-degree distribution can correspond to networks with
wildly different dynamics.

6. Sequences emerge very naturally because of the inhibition. There is
no need for a synaptic chain in the architecture.

recent survey if you want to know more:
Curto & Morrison, Notices of the AMS, 2023
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Focus on one very important graph property:
domination



Domination

Definition 1.1. Let j,k € [n] be vertices of G. We say that k graphically 9
dominates 7 in G if the following two conditions hold: : l

(i) For each vertex ¢ € [n]\ {j,k}, if ¢ = 7 then i — k. \. I
(ii) j = k and k£ A j. \

If there exists a k that graphically dominates 7, we say that ;7 is a dominated k > ]
node (or dominated verter) of G. If G has no dominated nodes, we say that it “ , »
is domination free. K dominates )

“j is a dominated node”

Curto, Geneson, Morrison, 2019 dOmirIG'l'iOn iS a PFOPGny OF G
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Definition 1.1. Let j,k € [n] be vertices of G. We say that k graphically ]
dominates 7 in G if the following two conditions hold: ; l
1

(i) For each vertex ¢ € [n]\ {j,k}, if ¢ = 7 then i — k. ‘\. 1.

(ii) j — k and k 4 7. /
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19

If there exists a k that graphically dominates 7, we say that ;7 is a dominated
node (or dominated verter) of G. If G has no dominated nodes, we say that it
is domination free.
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“k dominates j”
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domination is a property of G
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Domination

Definition 1.1. Let j,k € [n] be vertices of G. We say that k graphically ]
dominates 7 in G if the following two conditions hold: ; l
1

(i) For each vertex ¢ € [n]\ {j,k}, if ¢ = 7 then i — k. ‘\. 1.

(ii) j — k and k 4 7. /
. @
19

If there exists a k that graphically dominates 7, we say that ;7 is a dominated
node (or dominated verter) of G. If G has no dominated nodes, we say that it
is domination free.

k>
“k dominates j”

“j is a dominated node”
Example

N s

domination is a property of G



Domination

Old Theorem (2019) . /O /
If k dominates j in G, then j, k cannot both be ‘e
active at any fixed point of a CTLN built from G. \' I

{1, k} & o for any 0 € FP(G) i@ k>

Curto, Geneson, Morrison, 2019



Domination

Old Theorem (2019) /O /
If K dominates j in G, then j, kK cannot both be
\‘

(
. Jin o | ‘e
active at any fixed point of a CTLN built from G. L
| for any o € FP NS |
W ky & o for any o € FP(G) ir® k> j
Example
70 4_,‘2 6> 7 Old Theorem says: for any CTLN built from G,

G FP(G) cannot have any fixed points with both
1 / \ 4> 3 {6,7} or both {3,4}.

But its not like we can remove 3 and 7; they may still
affect or participate in other fixed points (for all we know).

Curto, Geneson, Morrison, 2019



Rock-Paper-Scissors: a true story

Rock

7\

Scissors @ «—— @ Paper

March 2024



Rock-Paper-Scissors: a true story

Rock

Scissors @ @® Paper

Plastic

Plastic loses to everyone, so hobody would ever pick it as a strategy.

It drops out.

March 2024



Rock-Paper-Scissors: a true story

Rock Bomb
e——30

Scissors @<«—— @ Paper

Bomb beats Scissors and loses to Paper, just like Rock.
But Bomb also beats Rock.

March 2024



Rock-Paper-Scissors: a true story

Rock Bomb
O—=0

Scissors @<«—— @ Paper

Bomb beats Scissors and loses to Paper, just like Rock.
But Bomb also beats Rock.

So now nobody would ever pick Rock as a strategy.
Rock drops out!

March 2024



Domination - New Theorems G/Qj

Theorem 1 (2024) 210\
If j is a dominated node in G, then it drops out! \ @ L
I.e., in any gCTLN, we have: /
FP(G) = FP(G|n\ ) . ®
2 .
k>

Curto 2024 (unpublished)



Domination - New Theorems G/Oj Gl

: 11
Theorem 1 (2024) Zl.\l ‘\‘ 2
If j is a dominated node in G, then it drops out! \ @ L \ /
I.e., in any gCTLN, we have: _
FP(G) = FP(Clppy) ./ 9
2
k> j

Curto 2024 (unpublished)



Domination - New Theorems

Theorem 1 (2024)

If j is a dominated node in G, then it drops out!

I.e., in any gCTLN, we have:

Theorem 2 (2024)

FP(G)

— FP(G|;,

\j)

By iteratively removing dominated nodes, the final reduced graph

G-tilde is unique. Moreover, FP(G)

— FP(G)

Gl G
7/1‘ Zl‘
vl
ig‘ ZQ.
10 > k

Curto 2024 (unpublished)



Domination - New Theorems

Theorem 1 (2024)
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Computational Experiments
i é same graph, different gCTLN parameters
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Domination - New Theorems - a word about the proofs

3. Proof of Theorem 1.5 | heorem 1 we obtain:
In order to prove Theorem 1.5, it will be useful to use the notation Yt — Wikl = Z Wit +b;,
n ico\{s.k}
yi(z) = > Wijz; + bi. (3.1) vi— Wizi = Y Wi + b
j=1 ico\{j;k}
With this notation, the equations for a TLN (W, b) become: The conditions in the theorem now immediately imply that y¥ — Wy <
. Y, — Wi;x;, and thus

= —zi + [yi(2)]+
dt y; + Wiz < yp, + Wiy
If x* is a fixed point of (W,b), then x} = [y;],, where yf = y;(z*).

The first stat t follows f lling that «} = [y} d z; = [y;
We can now prove the following technical lemma: e first statement now follows from recalling that zj = [yj], and z} =[]+,

since we are at a fixed point.

Let (W, b) be a TLN on n nodes and consider distinct j, k € [n]. To see the second statement, we consider two cases. First, suppose k € o
Y%

=W Jor all i # j, k, and b; < by, then for any fized point z* of (W,b) S° that y; > 0. In this case, from equation (3.3) we have

we have « « «
v+ Wiily]le < vi + Wiklyils- (3.3) yj + Wislyjle < ye(1+Wik) <0,
Furthermore, if Wi; > —1 and Wi, < —1, then since Wy, < —1. If y; > 0, then the left-hand-side would be y; (1 + Wy;) > 0,
since Wj; > —1. This yields a contradiction, so we can conclude that if y; > 0
y; < 0. (3.4) then y <O0.

Second, suppose k ¢ o so that y; < 0. Then we have [y;], = 0 and
Proof. Suppose z* is a fixed point of (W,b) with support o C [n]. Then, equation (3.3) becomes
recalling that W,; = Wy, = 0 and that z7 = 0 for all i ¢ o, from equation (3.1)
Yi + Wiilyjle <y <0.

Once again, if y; > 0 we obtain a contradiction, so we can conclude that
y; < 0. ]
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Suppose j is a dominated node in G. Then, for any associated
gCTLN, y; <0 at every fized point * (no matter the support).

Proof. Suppose j is a dominated node in G. Then, there exists k € [n] such need some more Iemmas“‘

that 4 — k, k A j, and satisfying ¢+ — k whenever ¢+ — 5. Translating

these conditions to an associated gCTLN, with weight matrix given as in Let G be a graph with vertex set [n]. For any gCTLN on G,
equation (1.3), we can see that Wy; > —1, W, < —1, and Wj; < Wy, for all

i # j,k. Moreover, since b; = by = 6, we also satisfy b; < b;. We are thus o € FP(G) & o € FP(G|,) for all w such that o C w C [n]
precisely in the setting of the second part of Lemma 3.2, and we can conclude & o0 € FP(G|,) and 0 € FP(G|oue) for all f ¢ o.
that y; <0 at any fixed z* of the gCTLN. N
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a + [yi(2)]+- to showing that for each o € FP(G|,)\;), o € FP(G|ou;).
Suppose o0 € FP(G|n)\;), with corresponding fixed point z*. In this setting,

The fi foll £ 11 h * [k X [* we are not guaranteed that y; = y,(z*) <0, as z* is not necessarily a fixed
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/V/
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y; + Wiz < yp + Wiy,
If x* is a fixed point of (W,b), then x} = [y;],, where yf = y;(z*).
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we have T T < (L W) < j. It is also useful to evaluate y; at z*. Following the beginning of the proof
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gCTLN, y; <0 at every fized point * (no matter the support).
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Dominoes! We can chain them together...

Theorem 3 (2024)

If we glue reducible graphs together along their dominoes, in a linear chain,
so that (5. of one is identified with a subgra(ph of (5, of the next,
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then the glued graph reduces to the final ( )

Curto 2024 (unpublished)
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What about a cyclic chain?

first and last domino identified

Theorem 3 (2024)

If we glue reducible graphs fogether-along their dominoes, in a linear chain,
so that (5. of one is identified-With subgra(ph of (5, of the next,
[

then the glued graph redutes to the fina )

\



Cyclic chain example

Domination reduction cannot be done, and the network activity will loop around.



: : Domination reductions:
CYC“C Chal n example 1) Without identifying 1" and 1, G reduces to 1’
2) After identifying 1" and 1, nodes 7, 11, 15 are

6 dominated so they drop out and G-tilde has
only 13 nodes.

Domination reduction cannot be done, and the network activity will loop around.



Inhibitory control
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So far, everything we have done for CTLNs/gCTLNs has
assumed negative (inhibitory) weights on the W matrix.

Idea: network of excitatory The gCTLN is defined by a graph G and
and inhibitory CAe”S two vectors of parameters:
® A‘r‘\> «—
.\Z‘\ f \‘A‘/’O
) ZT‘? ‘Z —14¢€; 1if 7 — 12, weak inhibition
A«/ \\* Wi; =< —1—49; if j /A i, strong inhibition
O o L\
\ K)(\z 0 if 2 = 7.

A—A +——+O



A B

E-I TLNs from graphs

C

excitatory neurons E-l network graph G
In a sea of inhibition
lobal
/Ar A\}:\ZA /., .\};’ ignﬁibeiltion /., .\)Q.
O
[V ) XZ) : )
<, A o o 0 TS
J‘A/:>\A‘/' J‘o /l)\o / J‘o /l)\o /
i +-§njw b Wirlor— W) + 6] i—1
— — T ijLj i — WV Il il 2 b= Ly
dt . j Ly I\L1 il v
LJ=1 44
dSIJI 1 < -
E — :I —£III-|- ;W[]’CUJ"FIH
a; lf] — 7 1n G, W[j = Cj,
Wij=< 0 ijAiinG, and W;; = -1,
0 if 1 = 7, Wi = 0.

Curto 2025 (preprint soon!)



E-I TLNs from graphs

excitatory neurons 5 E-l network C graph G
in a sea of inhibition Example G: 1
global
/" A\}:f /" .\}; inhibition /" .\}Q' ®
o
1% ) 1% )
/‘A{ A 04/.\. o(/.\).

LA—)A/ J‘o/l>\o‘/' J‘o/‘—,}o‘/' 30—@2
J - - W for E-| TLN

X :

e —X; + Wijx; + Wir(xr — Wrixs) +bi| , i=1,...,n, 0 a2 az —1

| j=1 J w=|] “ 00 —1

d - - 0 ao 0 -1

L 1 C C C 0

At - T Z I3 + 071

=1 4 4
. e W W for gCTLN
a; 17 —11nG, I = Gy,
o . —1 1
Wi = 0 ifjA+inG, and W;; = -1, W — _12_61 JEZ _1t§;’
O lf'&:], W[I —_ O _1_51 _1_|_€2 O

Curto 2025 (preprint soon!)



There is a mapping from E-I TLNs to gCTLNs that preserves fixed points

A . B C

excitatory neurons E-l network graph G
in a sea of inhibition Example G:
global . > e 1
inhibition —
V. j Vivd /'\
o O
o . 0 T34
A_>A J‘o/‘ o J‘./l)\./ 3@e——@0 2
p - inhibitory interaction - W for E-I TLN
€L .
dtz — _:L.’l,_i_ ZWZ]Q:J _I_M/zj(mj - szxz)+b , 1 = 1,...,”, O as as —]_
d - n ] N 0 aa 0 —1
L1 1 ci ¢ c3 O
dt TT ! Z 193 !
_J=1 41
W for gCTLN
ej = l+4+a;—c, 0  —l4e —1+es
R — L W=1 —1 0 —1—-9
5J = ¢ 1. T €1 3
—1—-90; —1+4 ¢ 0

see also: C. Lienkaemper, G. Ocker. Dynamics of clustered spiking networks via the CTLN model (2025)
https://arxiv.org/abs/2506.06234 Curto 2025 (preprint soon!)



There is a mapping from E-I TLNs to gCTLNs that preserves fixed points

A B C

excitatory neurons E-I network graph G
In a sea of inhibition
lobal
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I v v
< A o TS o</‘\).
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J J :

fixed points:

The mapping says nothing about the timescale of inhibition!

Example G:
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1
@

W for E-I TLN
0 ao
aq 0
W =
0 ao
C1 O
W for gCTLN
0
W = —1 + €1
—1— 4,

as —1

0 -1

0 -1

C3 0

—14+6e9 —1+4 €3
0 —1 — 03

—1‘|‘€2 0

)



TLNs, CTLNs, and gCTLNs ... and E-I TLNs from graphs

all recurrent network models

linear
models




Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?

excitatory neurons A Wfor E-ITLN
in a sea of inhibition as —1
0 -1
/ AN

( CS 0 )

global inhibition
total excitation

R e S S AW L e

firing rate

W for E-I TLN W for gCTLN

= [t

1

2
3
4

1 2 3 4

gCTLN

tlme



Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points:

excitatory neurons
in a sea of inhibition

do E-I TLNs produce similar dynamics to gCTLNs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Beyond fixed points: do E-I TLNs produce similar dynamics to gCTLNSs?
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Even “exotic” attractors like Gaudi and
baby chaos look the same
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Even “exotic” attractors like Gaudi and
baby chaos look the same
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Domination Theorems Since E-I TLNs map to
gCTLNs with the same

Theorem 1 (2024) fixed points, the
If j is a dominated node in G, then it drops out! domination theorems hold

I.e., in any gCTLN, we have: FP(G) _ FP(G“TL] \j) for E-I TLNs, too!

Theorem 2 (2024)
By iteratively removing dominated nodes, the final reduced graph

G-tilde is unique. Moreover, FP(G) — FP(é)

Example
A oo, o FP(G) = {45}
6“_/,1‘4'/_‘\0 o 60‘_/90/ X FP(G) i {45}
NN NN\ N ;
D 4_"4 50<—>04 - <—>Q4 5Q<—>‘4
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Cyclic chain example

Domination reduction cannot be done, and the network activity will loop around.
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Plan of the talk

® Brief intro to TLNs, CTLNs, and gCTLNs

® Fixed points and attractors and graph rules
e Domination

e Dominoes and inhibitory control

o E-T TLNs

e Domination-reduction in connectomes



Can domination be useful for connectome analysis?

Every graph has a unique domination reduction: (5 s (7

Two graphs with the same reduction are in the same domination equivalence class.

® G=H
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® L




Can domination be useful for connectome analysis?

Every graph has a unique domination reduction: (5 s (7

Two graphs with the same reduction are in the same domination equivalence class.

@ G=H
l @Q—0
® L

1. Are overrepresented graphical motifs more likely to be reducible or irreducible?
2. Which motifs are domination-equivalent?

3. What about larger portions of the connectome: do they reduce via domination?



Very preliminary analysis

Graph motifs team at JHU

Jordan Matelsky (also at Penn)

Patricia Rivlin % G has143 nodes
Michael Robinette o

C. elegans E-E network:

Erik Johnson .
Brock Wester o reduced G: 104 nodes

Johns Hopkins University Applied Physics Laboratory,
Research & Exploratory Development Department

We first strip out everything but chemical synapses, then tag neurons by their small-molecule neurotransmitters—acetylcholine/
glutamate as excitatory, GABA as inhibitory—next we grab the induced subgraph of neurons that fire ACh/Glu but no GABA.
That’s our ‘excitatory’ network. And yes—it’s just a conservative, transmitter-based proxy for valence; real C. elegans synaptic

s’ ~
polarity is far messier (receptors, modulators, co-transmission, gap junctions, etc.) All blame goes to Jordan Matelsky, Carina JOGCI“' n Cas.l-aneda Cas.l-ro

did nothing wrong.



Very preliminary analysis

Is a reduction from 143 -> 104 nodes
common or rare in a random graph with

matching edge probability? ""-;, G has143 nodes

C. elegans E-E network:

reduced G: 104 nodes

Joaquin Castaneda Castro



Very preliminary analysis

Is a reduction from 143 -> 104 nodes
common or rare in a random graph with

matching edge probability? ’-*i?._. ‘ G has143 nodes

C. elegans E-E network:

1 million E-R random graphs
with matching p = 0.054

reduced G: 104 nodes

Distribution of domination
reductions:

143 nodes: 782,590

142 nodes: 189,951

* 141 nodes: 24,951 VERY RARE!
* 140 nodes: 2,307

139 nodes: 185

138 nodes: 15
137 nodes: 1

Joaquin Castaneda Castro



Reduction sizes of E-R random graphs of size n=143

C. elegans E-E network |
with p = 0.05, 0.1, 0.5

reduction:

g 10" Reduction histogram for E-R random graphs n =143 100000 trials
G has143 nodes — | | | |

B p=0.1
[ lp=0.25
o |IHllp =05

reduced G: 104 nodes

1 million E-R random graphs
with matching p = 0.054

Distribution of domination
reductions:

Count

143 nodes: 782,590
* 142 nodes: 189,951 ot
* 141 nodes: 24,951
* 140 nodes: 2,307 T
139 nodes: 185
138 nodes: 15
137 nodes: 1 oL | L - .

~---ction

137 138 139 140 141 142 143

size of reduced graph




Back fo our motivating questions and ideas:

1. The brain is a dynamical system. ("The brain is a computer)
2. How does connectivity shape dynamics?

3. By studying ANNs that are dynamical systems, we can generate hypotheses about the
dynamic meaning/role of various network motifs.

4. Network motifs can be composed as dynamic building blocks with predictable properties.

5. One network (by architecture/connectivity) is really many networks in the presence of
neuromodulation or external control.

©
= e
Domination is a graph property that comes out of the nonlinear dynamics, ® © o.l ®
It Is not something that graph theorists or network scientists were already S e o®
paying attention fo. ,,,\ o



Plan of the talk

® Brief intro to TLNs, CTLNs, and gCTLNs

® Fixed points and attractors and graph rules
e Domination

e Dominoes and inhibitory control

o E-T TLNs

e Domination-reduction in connectomes

e Bonus: advertisement for some other related work



Juliana Londono
Alvarez

Idea: Using cyclic unions,

build a single network that
encodes 5 quadruped gaits,

and couple it to a “counter”
network allowing the network

to step through a sequence

of gaits via identical input pulses.

Attractor-based models for sequences and pattern
generation in neural circuits

Juliana Londono Alvarez, ©=' Katie Morrison, 2/ Carina Curto
doi: https://doi.org/10.1101/2025.03.07.642121
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Caitlin Lienkaempe

Idea: CTLNs provide a mean field reduction

of a spiking neural network model where

each node in the CTLN represents a population
in a large clustered network architecture.

https://arxiv.org/abs/2506.06234

Diverse mean-field dynamics of clustered, inhibition-stabilized Hawkes networks via
combinatorial threshold-linear networks

Caitlin Lienkaemper*
Massachusetts Institute of Technology, Department of Brain and Cognitive Science

Gabriel Koch Ocker!
Boston University, Department of Mathematics and Statistics and Center for Systems Neuroscience
(Dated: June 9, 2025)
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Zelong LI

Check out Zelongs poster this evening !

Observation of different CTLNs can be same attractor

Two CTLNs in attClass1) Two CTLNs in attClass14 Two CTLNs in attClass 16
A 4-cycllic union (4-cycu) used as a based graph . | - | _ 2| ll:':':':':l:'.l
8l ‘I BiWAL "'|N" :(' “ [\ | 9% / ""
20 «—93 m\/ ‘\' | i |/} “'ﬂ&\.’ t;".ll'l . ' _ < |, ' | n
g‘\J \{ l'! AU | . WA '\ “\ A\ ”\ \1
0102030405060 p—nl
4 time - =
Out of 9608 non-isomorphic directed . . 1:':':':':':'. | ml:l:l:':l:l:l:' x'l:':':L1'|:t
graphs on 5 neurons there are 1053 graphs X f - i-lL » A e 1M -"~ ,
containing dynamical attractors ([11]), | </ “»"'.‘. ,,,,,,,
which can be further organized into —_— : — oo T W IW T T TW f" AR AR AR R
different structural attractor families. | AUNUNONONS AV YR AL AALTATA

All convex combinations of TLLNs with the same attractor also have that attractor

Lemma 1 Suppose there exists a certain point x, € R™ such that the vector

TINlats=0  TLNats€ (0,1) TIN2ats—1 . cldsmatch:

» She ® v(l)(xo) = v(o)(xo)-

e Then for all s € [0, 1]

WO p© WO p®) (WD p® 11,
( ) ( ) ( ) v(s)(xo) — v(O)(xo).

TLN tor field:
vee Zi © © Corollary 2 If a fixed point of both(W(O),b(o)) and (W(l), b(l)), then it is a fixed
o = V@ = —x+ [WEOx + O point for all convex combinations (W), b)),

WE = (1 -s)WO® 4+ sw®)

Corollary 3 If x(t), for t € (to,t;) is a trajectory of both (W, b(®) and
b®) = (1 -5)b® +sb®

(WD, b)) then it is also a trajectory for all convex combinations (W), b))




Safaans poster was yesterday — but his PhD thesis is out
on the arXiv:

= I‘le > g-bio > arXiv:2508.07471

Quantitative Biology > Neurons and Cognition https://arxiv.org/abs/2508.07471
[Submitted on 10 Aug 2025]
Safaan Sadig Modeling bias in decision-making attractor networks

Safaan Sadiq

Citrus Flavor
Citrus Flavor

Apple Flavor Apple Flavor

Figure 1.1. The Decoy Effect. (A) Orange juice "X" and apple juice "Y" have distinct
flavors and depending upon preferences toward one or the other, either may be chosen roughly
equivalently. The diagonal decision boundary reflects the 50% — 50% split. (B) The presence of
a poorer quality orange juice "Z" does not add a true choice, but it increases the number of
situations where "X" is the preferred choice, shifting the decision boundary.



Thank you!
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Thank you!
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