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DNA Transcription
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Models of RNA Velocity
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Velocyto
[Manno et al. 2018]

Steady-state ratio of unspliced to spliced RNA: lé

Velocity: v = u —lé S.

Assumes a steady-state model.
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State likelihood
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Full dynamical model:
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Treats each gene independently and
regulatory relationships are
ignored.
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Transcription factor-aware:
Yg(t) = agsin(wgt + bg) + By,

WD) _ 17, %, (1) ~ yovs).

* Assume a specific behavioral
form (sine function).

* Does not explicitly integrate
GRNes as transcription rate
controllers.
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Our Model for Network RNA Velocity Inhibitor 1 eNa
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Intercellular Network (not in this talk)

Goal: Study network RNA velocity and targeted drug interventions (in
collaboration with AbbVie).



Incremental Gain and Regulations in GRNs
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positive if Wgy > 0 (and thus Wg, = 0), and negative if Wgy > 0 (and thus W, = 0).
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Existence of Steady States IHOT 7 mRNA
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For a nonlinear system % = f(x), a point X, is a steady state if f(x,) = 0.

Theorem 1:
n ad
Suppose that B, > 0 and y, > 0 for all genes g. Let C = maxg ). qi . Wgq and § = max, e

The networked dynamics admits a steady state (u*, s*) if k = C&.



Stability Analysis

* What does it mean for a system to be stable?
Suppose a system has a steady state (u*, s™). If you slightly perturb the system, does it:
Return to the steady state (Stable) ? Or drift away over time (Unstable)?

« System is globally asymptotically stable if for every trajectory x(t), we have x(t) — x, as t — oo.

Single Gene Case: a {U} = [_ﬁ ! }
dt |s

—A
Linear system of the form x = Ax, globally asymptotic stable iff Re(1(A)) < 0.

Eigenvalues of A: 4 = —f < 0, 4, = —y < 0. Thus, the system is always stable.



Gene 1 Gene 2

Stability of Promoter-Only GRNs e R

dug mRNA
= —dI | k+ Z q(t) — B9uI(t) d
©
ds9 Promoter
dt =B%ui(t) —~%s7(1). A pure positive regulation network

: o : us
Linear system, we can write it as X = AX, X = (sg :

The linear system x = Ax is globally asymptotic stable iff Re(A1(4)) < O.

Lemma 1: Suppose the condition of Theorem 1 holds s.t. a steady state exists.

When there is no inhibitor, 1.e., Wgy = 0 for all genes, the networked dynamics is stable

if, g > Bg > a Wh,forallg.
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General Case: Understanding Stability via Lyapunov Functions

du? 09 " + 2 g2 Wias'(t) — B9uI(t) Goal: make conclusions about trajectories of a system X = f(x)
dt K+ gty Wegsd(t) ’

T =BouA(r) ~1757(0)

(e.g., globally asymptotically stable ) without finding the

trajectories (1.e., solving the differential equations).

A nonlinear system x = f(x).

VX, y) = (x? +y?)/2

A Lyapunov global asymptotic stability theorem:
Suppose there exists a function V: R® = R that is positive definite,
i.e, V(x) =0 forall x, V(x) = 0iffx = x,,
and V(x) — oo whenever ||x|| = oo.

In addition, V(x) < 0 for all x # X, , and V(x,) = 0.

Then, every trajectory of X = f(x) converges to X, as t —» o,

We call V a Lyapunov function, which can be thought of as a generalized energy function.
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Stability of Network RNA Velocity 4, ="

B — 75 (0).

Theorem 2: Suppose the condition of Theorem 1 holds s.t. a steady state exists.

Consider a positive semi-definite function as a candidate Lyapunov function,
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* Suppose there is sufficient negative regulation in the network, i.e., there is 6 > 0 s.t.
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Then, V(u, s) is a Lyapunov function, and (u*, s*) is globally asymptotically stable.



Overview of Targeted Drug Intervention

Inhibitor

* Let z9(t) be the control input (drug intervention) targeting gene q. T mRNA
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* Find the fastest possible intervention strategy that steers the dynamic to targeted profile sg:
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Exemplary Simulation of Drug Intervention (I)
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Exemplary Simulation (1I) @2 -@
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More 1n the full manuscript ...

* Incorporate cell-to-cell interaction via spatial transcriptomics

gq°i
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— ﬁfﬂf (t):
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* Examine how drug interventions may affect safety liability genes and design targeted
drug intervention as controlled system.
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